Development and use of iron oxide nanoparticles (Part 1) : Synthesis of iron oxide nanoparticles for MRI

Authors: J Lodhia, G Mandarano, NJ Ferris, P Eu, SF Cowell


Abstract:
Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the
agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging
probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is
nanotechnology, where superparamagnetic iron oxide nanoparticles (SPIONS) are tailored for MR contrast enhancement,
and/or for molecular imaging. SPIONs can be produced using a range of methods and the choice of method will be
influenced by the characteristics most important for a particular application. In addition, the ability to attach molecular
markers to SPIONS heralds their application in molecular imaging.
There are many reviews on SPION synthesis for MRI; however, these tend to be targeted to a chemistry audience.
The development of MRI contrast agents attracts experienced researchers from many fields including some researchers
with little knowledge of medical imaging or MRI. This situation presents medical radiation practitioners with
opportunities for involvement, collaboration or leadership in research depending on their level of commitment and their
ability to learn. Medical radiation practitioners already possess a large portion of the understanding, knowledge and
skills necessary for involvement in MRI development and molecular imaging. Their expertise in imaging technology,
patient care and radiation safety provides them with skills that are directly applicable to research on the development and
application of SPIONs and MRI.
In this paper we argue that MRI SPIONs, currently limited to major research centres, will have widespread
clinical use in the future. We believe that knowledge about this growing area of research provides an opportunity for
medical radiation practitioners to enhance their specialised expertise to ensure best practice in a truly multi-disciplinary
environment. This review outlines how and why SPIONs can be synthesised and examines their characteristics and
limitations in the context of MR imaging. © 2010 Biomedical Imaging and Intervention Journal. All rights reserved.